

What is biodiversity?

• The number of species in an area?

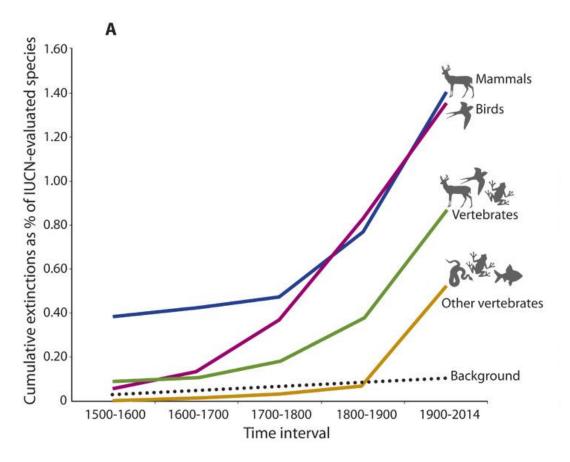

Photos: Pixabay

What is biodiversity?

• The Convention on Biodiversity (CBD), UN Rio Summit 1992

Biological variation:

- within species (genetic diversity)
- between species (species richness)
- between ecosystems (types of nature)

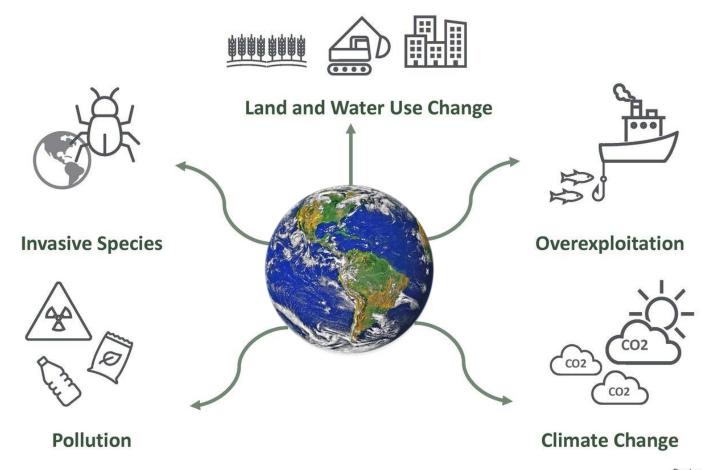

What is biodiversity?

The **forms** and **functions** of life:

Result of millions of years of **evolution** and **adaptation** of all organisms to their environment

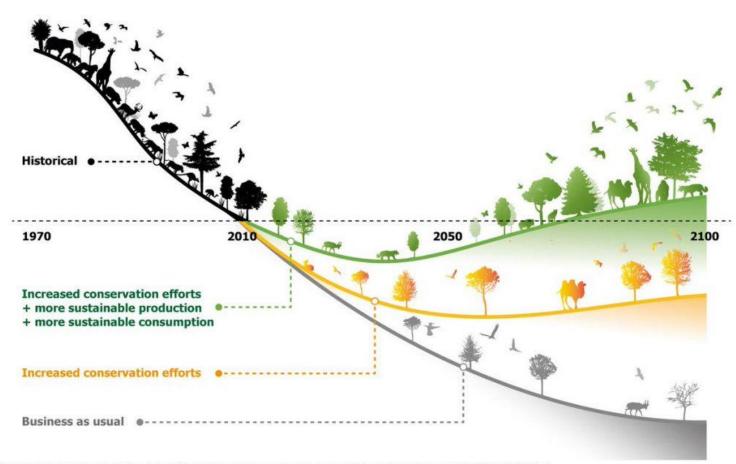
How is biodiversity doing?

A sixth mass-extinction


(or Holocene extinction - Wikipedia)

- Compared to background levels in fossil records

Fig. 1 Cumulative vertebrate species recorded as extinct or extinct in the wild by the IUCN (2012).


Graphs show the percentage of the number of species evaluated among mammals (5513; 100% of those described), birds (10,425; 100%), reptiles (4414; 44%), amphibians (6414; 88%), fishes (12,457; 38%), and all vertebrates combined (39,223; 59%). Dashed black curve represents the number of extinctions expected under a constant standard background rate of 2 E/MSY. (A) Highly conservative estimate. (B) Conservative estimate. *Source: Ceballos et al.* (2015) *Sci.Adv. DOI:10.1126/sciadv.1400253*

The five main threats to biodiversity

Design: Abby Litchfield

How is biodiversity doing?

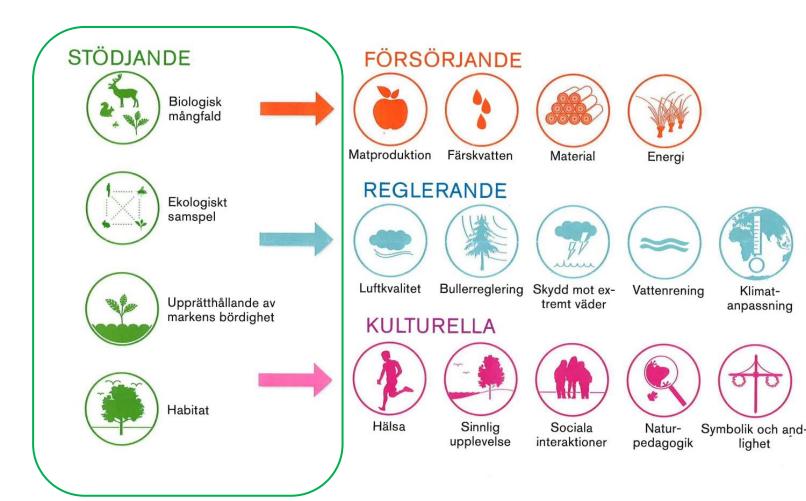
UN COP 15 (Montreal, 2023):

- Both protect & restore habitats
- New target "30 by 30"

This artwork illustrates the main findings of the article, but does not intend to accurately represent its results (https://doi.org/10.1038/s41586-020-2705-y)

Why preserve biodiversity?

Ethical reason – aknowledging the **intrinsic value** of organisms



Photos: Pixabay

Why preserve biodiversity?

Instrumental (use) values

- Ecosystem services
- Climate adaptation
- Insurance hypothesis more species means higher chance of healthy ecosystems in the future

Why preserve biodiversity?

Fig. 2: A summary illustration of our examples of the ways that biodiversity contributes to the SDGs. From: Biodiversity's contributions to sustainable development ₫ 8 15 IN LAND ➤ Biodiversity <</p> United Nations (UN/SDG). Our study demonstrates that biodiversity is not only relevant to SDGs 14 and 15 (lower tier of the figure), but may also directly support fulfilment of ten of the other SDGs (middle tier) and thereby contribute indirectly to achieving the remaining five SDGs (upper tier). We sought to exemplify direct contributions of biodiversity to every SDG. For those

SDGs where we were unable to find examples of direct contributions, we sought to exemplify that they are indirectly

Biodiversity directly supports 10 of the SDGs and indiectly the remaining 5.

Source: Blicharska, et al. (2019) Nature Sustainability 2, 1083–1093.

We need nature for wellbeing

nature > scientific reports > articles > article

Doctors in Scotland can now prescribe nature to their patients

Take one long stroll, four times a week.

EVAN FLEISCHER 12 October, 2018

SCIENTIFIC REPORTS

Article OPEN ACCESS Published: 13 June 2019

Spending at least 120 minutes a week in nature is associated with good health and

wellbeing

Mathew P. White [™], Ian Alco Angie Bone, Michael H. Dep

Scientific Reports **9**, Article i

- Doctors in Shetland, Scotland can now give nature prescriptions to their patients.
- It's believed to be the first program of its kind in the U.K., and it comes

Home / News & Opinion

Smells of Nature Lower Physiological Stress

In a virtual reality experiment, participants recovered faster from a small electric shock when they could smell natural scents than when they could smell urban odors.

"Vitamin N"

We need nature for a good microbiota

Environment International

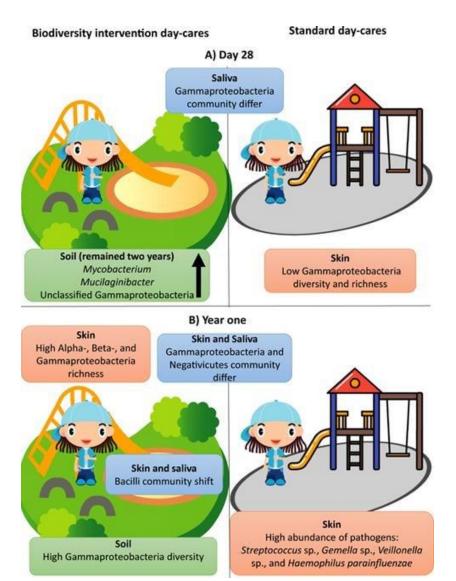
Volume 157, December 2021, 106811

Long-term biodiversity intervention shapes health-associated commensal microbiota among urban day-care children

Marja I. Roslund ^a, Riikka Puhakka ^a, Noora Nurminen ^b, Sami Oikarinen ^b, Nathan Siter ^c, Mira Grönroos ^a, Ondřej Cinek d, Lenka Kramná d, Ari Jumpponen e, Olli H. Laitinen b, Juho Rajaniemi c, Heikki Hyöty b, Aki Sinkkonen f 🗵 🖾 the ADELE research group 1

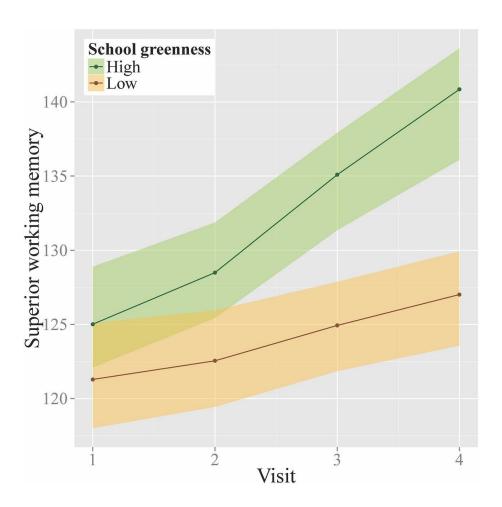
Show more >

+ Add to Mendeley « Share 55 Cite


https://doi.org/10.1016/j.envint.2021.106811

Under a Creative Commons license

Get rights and content Oben access


Highlights

- · Biodiversity intervention causes long-term shifts in commensal microbiota among urban children.
- Exposure to biodiversity suppresses potentially pathogenic bacteria on the skin.
- · Microbial changes on skin are associated with changes in the gastrointestinal tract.
- · Findings are in line with the "old friends" and "biodiversity" hypotheses of immune-mediated diseases.

Source: Roslund et al. (2021) Environ Internat **157**:106811

We need nature for cognitive development

- School children (7-10 yrs) developed better **memory** and cognition when school grounds had more vegetation
- Both **vegetation** *per se* and better **air quality** had positive effects

(2593 children in Barcelona, 1 year study)

Source: Dadvand et al (2015) PNAS. doi:10.1073/pnas.1503402112

We need nature for pedagogics

How we percieve nature and its status depends on our lived experiences

- "Ecological literacy"
- "Extinction of experience"
- "Shifting base-line syndrome"
- "Plant blindness"
- → How can we care for something we do not know?

What does biodiversity need?

Photos: Pixabay

Biodiversity in built environments

Loss of habitats → Small and fragmented habitats

Designed green spaces → Changed content, lower quality

Improving built environments

Insect pollinators:

- Benefit from a high diversity of (native) flowering plants locally
- The quality and management of green spaces makes a difference

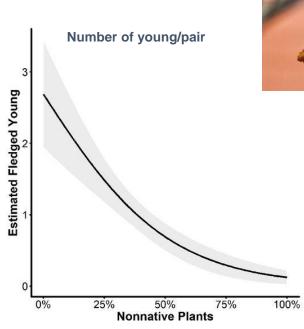
→ Make it flower!

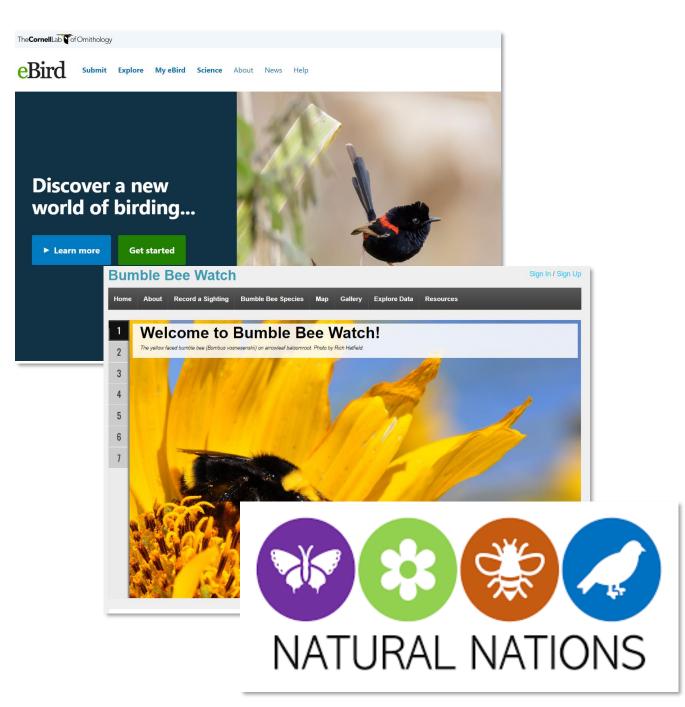
Improving built environments

More insects and spiders in native trees

→ Nesting birds have more young with more food in trees

В




Foto: Pixabay

Source: Narango et al. (2018) PNAS

Citizen science

- Data collection by the public
- Education and dissemination
- Different levels of engagement
- From spontaneous observations to standardised protocols
- → Natural Nations use 4

 protocols, but every school or class does not have to do them all... more on this later

Natural Nations aims to

- To awaken interest and curiosity for animals and plants found in your school grounds.
- To create an understanding of what needs to change in your school grounds for more animals and plants to thrive there.
- ➤ Add on: Collect data on school ground biodiversity for research

Project outcomes

Educational resources

Surveys & guidence

- About 50 lesson ideas covering birds, habitats and vegetation, pollinators, minibeasts and leaves.
- A series of cultural heritage resources about some of the wildlife you might see in your school grounds.

- Surveys
 - School Grounds and Habitat
 - Birds
 - Pollinators and Flowering Plants
 - Minibeasts and Leaves
- Practitioner guidance for Surveys
- Pollinator Identification Guide
- Short animated instruction videos
- Data Entry Website

About you

Name of your school

What country are you p

Aims

- · To become familiar
- · To understand how
- . To begin differential
 - What country are

What you wi

Essential

- · 'Practitioner Guida Pen, pencil and era
- · Clipboard/suitable • To develop sk

Funders and partn

School Gro and Habitat

S2 Bird S

About y

Name of your sch

- · To learn about diffe

- · Explore the us
- · To become far

What you

Essential

- 'Practitioner
- · Pen, pencil a

Funders and

Funders and partner

About you

What country are you pa

To become familiar w

 To transfer real world To become familiar w

To estimate flower co

Essential

Timer

What you wil

Practitioner Guidance

Identification Guide a

· Pen, pencil and erase Metre long stick(s) an

Name of your school

About you

Pollinators and

Flowering Plants Survey

Name of your school

How many participants are in your survey group?

What country are you participating from?

What is the average age of the particpants?

- . To familiarise students with taking a subsample within their sampling area
- · To assess proportional coverage of habitats with a focus on living vegetation cover
- . To observe, group and identify a range of minibeasts in their natural habitat

What you will need

Essential

- · This sheet and 'Practitioner Guidance' document
- · Pen, Pencil and Eraser + Clipboards
- . 1-metre-long stick(s) and/or 5-metre rope

Helpful Gloves

- Camera Sampling pots and pre-made 1x1m square
- · Identification aids (see guidance)

Practitioner Guidance for Surveys

Introduction

Welcome to the Natural Nations survey project and thank you for participating

This resou Natural Na

Firstly, it focuses of closely to extended Not all su classes ar

Remembe learning.

Table of

General in

School gro

Bird survey

Pollinators Minibeast

Funders

Practitio

Identification Guide

Pollinator

About the Pollinator Identification Guide

Welcome to the Pollinator ID Guide, to be used with the Pollinator and Flowering Plants survey. ID Guides help us identify species by giving us information on size, shape, colour and anatomy. Look closely at an insect (you may want to use a magnifying glass or hand lens), and compare it to groups listed below; can you identify it? If not, take a picture of the insect and use the internet to identify it later!

Butterflies and Moths

Lepidoptera

Clubbed antennae

Butterflies rest with their wings closed vertically over their

Various sizes

Most moths rest with their wings open

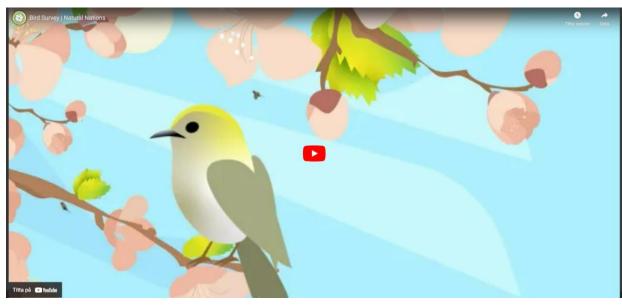
Various sizes

Funders and partner organisations

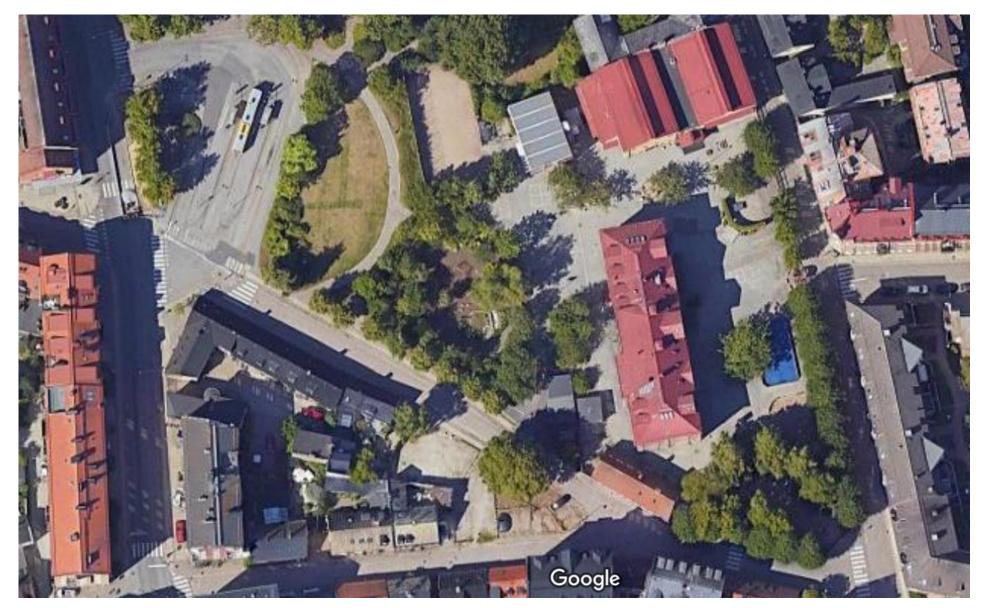
reen Recovery Challenge Fund

BirdLife

LUND



Instruction videos for surveys



Survey 1 (S1)

S1

School grounds and habitat survey

Spring

Survey method

Step 1. Habitat Survey

Split into groups of 3-4

Use the habitat guide (next page) to fill in Table 1, noting what habitats you can find in your school grounds.

If school has no trees this survey in school collection. Then repea nearby green space to aid

Table 1. Type					
Food resource	Plant beds or flowerpots				
000 00	Tall grass, wildflowers				
***************************************	Trees and shrubs				
	Bare ground (soil, sand, gr	ravel, etc.)			
Nesting places and shelter		Bird homes (e.g. bird boxes)			
		Wild bee homes (e.g. bee hotels)			
	Number of man-made homes overall	Honeybee homes (e.g. bee hives)			
		Minibeast homes (e.g. bug hotels)			
		Others (e.g. rubble stone walls, hollow stems, dead wood) Specify below:			
	Damp places				
Other	Short grass (e.g. mown as	lawn)			
444	Bare walls or fences				
444·	Concrete or tarmac				

From the habitat survey in Table 1, which habitat type below is the most dominant, and second most dominant in your grounds?

Feeding Habitats

Flower beds or pots

Includes flowers in planters or pots, raised beds and borders

Tall grass and wildflowers

Includes wildflower meadows and grassy verges

Trees and shrubs

Includes trees, orchards, shrubs, bushes and hedgerows

Nesting Places and Shelter

Bare ground

Includes exposed flat or raised ground with low vegetation cover

Man-made homes

Includes bee hives, solitary bee hotels, bug hotels, bird boxes etc.

Damp places

Includes ponds, ditches, compost heaps and log piles

Other:

or grazed by animals

Bare walls and fences

Includes brick or stone walls and wooden or metal fences

Concrete or tarmac

Includes paths, roads, car parks and playgrounds

Table 2. Species of Trees and Shrubs

- Ex. 1: You were able to identify the tree or shrub species.
- Ex. 2: You were able to identify the tree or shrub group.
- Ex. 3: You did not know what the tree was but saw 9 that looked very similar and so you grouped them together (this is perfectly acceptable!).

Tree/Shrub/ Unknown	Species/Group	How many?
Т	Ex. 1: Common Oak Tree (Quercus robur)	2 or
Т	Ex. 2: Oak tree (Quercus spp.)	3 or
U	Ex. 3: Unknown 1	9 or ##

Table 3. Summary of Trees and Shrubs

If you were unable to distinguish between trees and shrubs fill out the unknown column.

	Trees	Shrubs	Unknown
Total number of tree and shrub individuals (to estimate total tree cover)			
Total number of different tree and shrub species/groups (based on shape and colour of leaves, flowers, fruits etc.)			

School Grounds and Habitat Survey

Name:

School Grounds and Habitat Survey

Name:

School Grounds and Habitat Survey

Name:

Survey 2 (S2)

S1

School grounds and habitat survey

Spring

S2

Bird survey

Spring

Recording sheet

Below are the 16 birds you may fir

Eurasian blackbird (Turdus

Female

Common chaffinch (Fringil

Female

Great tit (Parus major)

Adult

lue tit (Cyanistes caeruleu

Adult

House sparrow (Passer dome

Female

Free sparrow (Passer monta

Adult

White wagtail/Pied wagtail (I

Adult

Common starling (Sturnus v

Adult

Swift (Apus apus)

Adult

Collared dove (Streptopelia

Adult

Robin (Erithacus rubecula

Adult

Wood pigeon (Columba p

Adult

Redstart (Phoenicurus phoe

Adult

Magpie (Pica pica)

Adult

Eurasian blackcap (Sylvia ar

Female

Sardinian warbler (Sylvia m

Adult

Image credits

Bird illustrations by Victor Falzon. F and from the Public Domain.

Any other birds?

Sketch	Description	Present/Number seen

Sketch	Description	Present/Number seen

Sketch	Description	Present/Number seen

Survey 3 (S3)

School grounds and habitat survey

Spring

S2

Bird survey

Spring


S3

Pollinators and flowering plants survey

Spring/Summer

Step 5. Enter habitat types into table

Based on your drawing in the 5x5m area, estimate the number of square metres that each habitat type covers. Enter the number of square metres for each habitat type in the table below.

Table 1. Type	Estimate of m ²		
Food resource	Plant beds or flowerpots		
000 00	Tall grass, wildflowers		
1111	Crown cover of trees and s	hrubs	
	Bare ground (soil, sand,	gravel, etc.)	
		Bird homes (e.g. bird boxes)	
Nesting places and shelter	Number of man- made homes overall	Wild bee homes (e.g. bee hotels)	
		Honeybee homes (e.g. bee hives)	
		Minibeast homes (e.g. bug hotels)	
		Others (e.g. rubble, stone walls, hollow stems, dead wood) Specify below:	
	Damp places		
Other	Short grass (e.g. mown a		
##	Bare walls or fences		
	Concrete or tarmac		

Species group	Picture aid (Not all look like these – use photoguide!)	Total number seen	ber of species species/see features ake a note here)
Example		##	Red-tailed White-tailed
Bumblebees			
Honeybees			
Solitary bees			
Wasps			
Beetles	* *		

Table 2: Pollinator table

Tally the total number of each group you see and tally the total number of different species within that group. Include the name of the species if you know it!

Species group	Picture aid (Not all look like these – use photoguide!)	Total number seen	Total number of species (If you know the species/see features you can make a note here)
Example	**	##	Red-tailed White-tailed
Bumblebees			
Honeybees			
Solitary bees			
Wasps	*		
Beetles	* •		
True bugs	*		
Butterflies			
Moths	SALES .		
Hoverflies	**		
Other flies and mosquitos	X F		

Table 3: Name of flowering plant species

Species/Group	Describe/Sketch
Example 1. Buttercup (Ranunculus spp.)	Yellow, 5 petals, rounded petals Toothed + three offshoots (lobes)
Example 2. Unknown 1 (actually a Daisy, Bellis perennis)	Yellow + white, many petals Small + rounded

- To become familiar with how to measure distance and angles to create a sampling area.
- To transfer real world habitats into a diagram and be able to estimate their coverage.
- To become familiar with identifying different pollinator groups using some key features.
- To estimate flower coverage and begin to observe and identify differences between flowers and plant species.

Survey 4 (S4)

School grounds and habitat survey

Spring

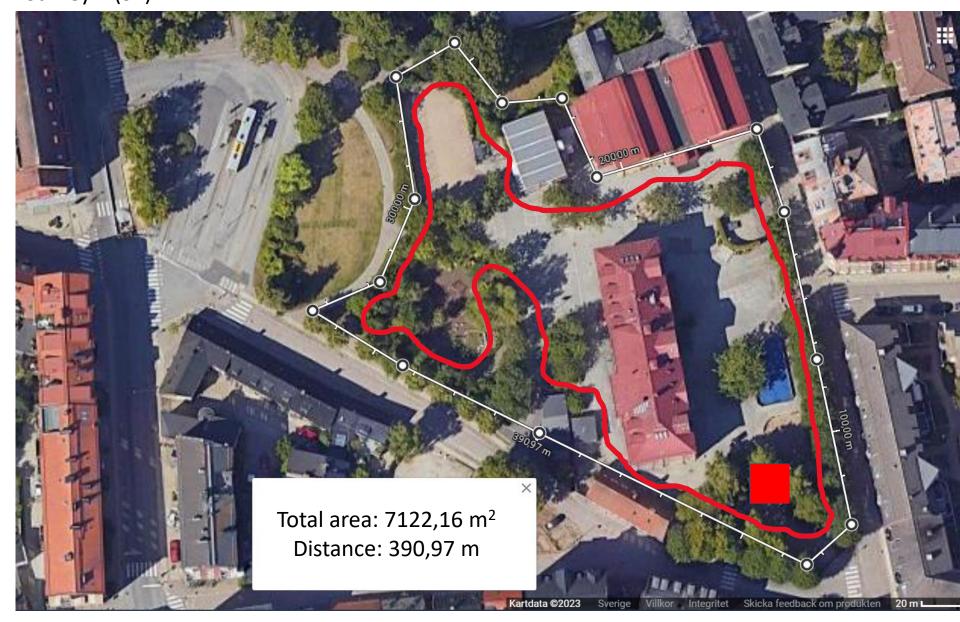
S2

Bird survey

Spring

53

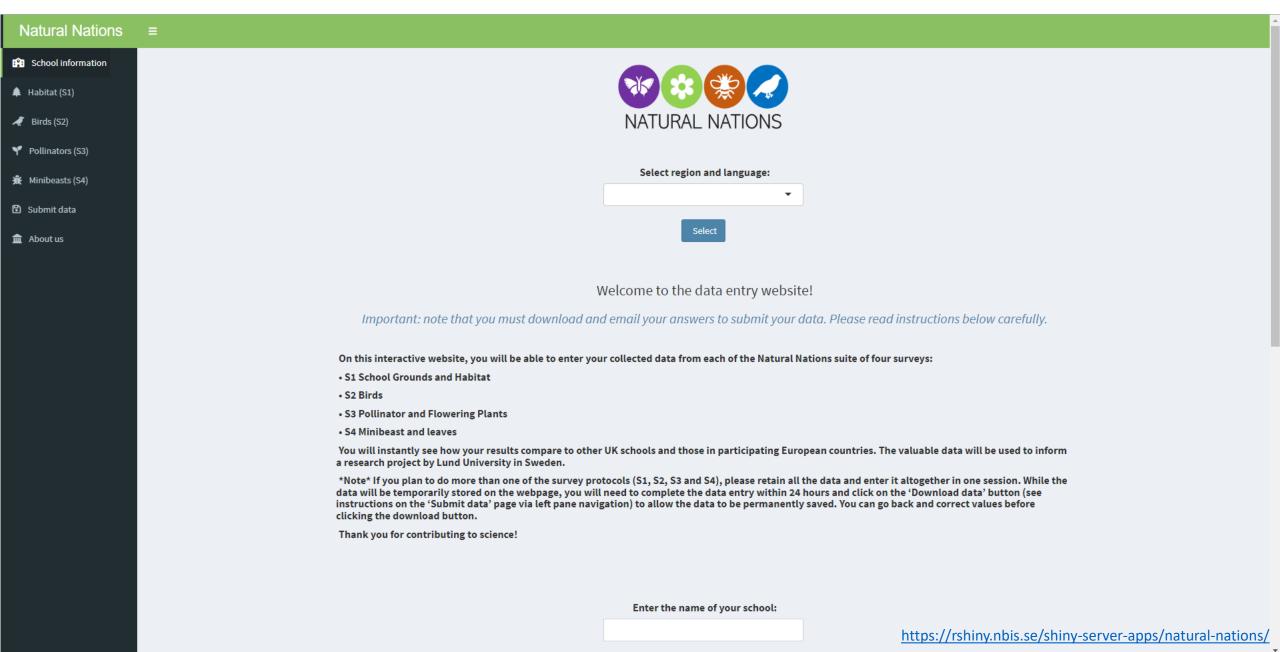
Pollinators and flowering plants survey


Spring/Summer

S4

Minibeast and leaves survey

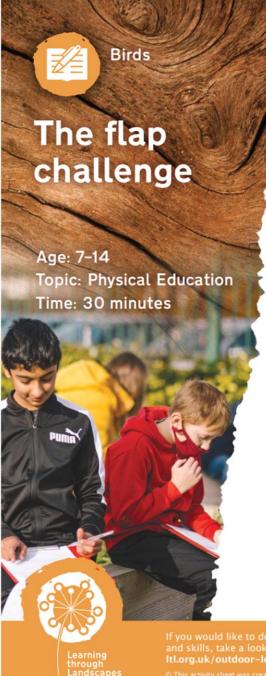
Spring/Summer



Species group	Picture aid	Total number seen	Total number of species
Earthworms (Annelida)	5		
Ants (Hymenoptera)			
Centipedes and millipedes (Myriapoda)			
Woodlice (Isopoda)			
Spiders and harvestmen (Arachnidae)	* *		
Beetles (Coleoptera)	業學		
True bug (Hemiptera)			
Insect larvae (Insecta)			
Snails and slugs (Gastropoda)			
Other, e.g. Crickets, grasshoppers, earwigs (Gryllidae, Caelifera, Dermaptera			

Data entry website – participate in Citizen Science!

Interactive graphs to visualise data



About the graph

This graph shows the number of different tree and shrub species recorded by each school and how large the school grounds are. Question: Do you see any pattern? Do you need a large school ground to have many species of plants? About the graph: This type of graph is called a scatter plot. A dot high up shows that this school has a lot of species. A dot far to the right shows the school grounds are large.

Ok

What should learners already know?

Birds have different methods of flight.

What equipment will I need?

- Stopwatches
- Maths workbooks

How will learners explore this?

- 1. Go out into a large open space. Split children into pairs, and give each pair a stopwatch.
- 2. One child will flap their arms as quickly as possible while the other child times 15 seconds on their stopwatch.
- 3. The child flapping will count the number of flaps they do, and note it down. Children will now swap roles.
- 4. Now, as a class, ask children to flap at the pace of one wingbeat per second for a minute. Could they keep it up? Was this harder or less hard than flapping as quickly as possible for 15 seconds?
- 5. Back inside the classroom, multiply the number of flaps each child by 4. This is the wingbeat per minute each child managed to achieve.
- 6. Collect the wingbeats per minute of the class. and get children to calculate the mean, median and mode of the wingbeats.
- 7. Take the mean wingbeat, and look it up on the internet to find the bird that has the most similar wingbeat to you as a class.

How can we show the learning?

- Use this exercise as an opportunity to discuss different approaches to flight that birds might have. Why might birds flap their wings very quickly? Why might birds flap their wings very slowly?
- Which is most tiring? Flapping quickly and slowly are both tiring! Sustained flapping slowly can make our muscles ache, but a short burst of quick flapping can make us out of breath.
- The fastest wingbeat seen in a bird is 80 wingbeats per second - that is 4,800 per minute! How did the class compare? Discuss with children why it might be useful for a bird to flap its wings that quickly.
- This is because the hummingbird hovers in the air while it drinks nectar from flowers. Because the hummingbird wing is so small, it has a small surface area, meaning each flap does not generate much lift. Therefore, they must flap a lot! But this burns a lot of energy, so they do not stay in the air for very long at a time.
- The slowest wingbeat seen in a bird is just 1 per second, seen in the New World Vulture, Discuss with children why it might be useful to beat its wings that slowly.
 - This is because vultures soar high up in the mountains over vast areas looking for food; this means they want to stay in the air for long periods of time without burning too much energy. Their large wings have a high surface area, creating more lift per flap, and they use air currents to stay up in the air for long periods of time.
- Therefore, different species of birds have different approaches to flight, depending on their environment, diet and behaviour.

year! Enjoy the sunshine in your sson ideas.

Egg Weights and Shapes

Download

How Do Birds Move?

Download

Murmuration Movement

Download

Download

Create Birds

Cultural Heritage Resources

<u>Birdlife Malta</u> have written a series of cultural heritage resources about some of the wildlife you might see in your school grounds. Download the resources below.

Blackbird

Read this cultural heritage resource about blackbirds written by Birdlife Malta.

Download

Ladybird

Read this cultural heritage resource about ladybirds written by Birdlife Malta.

Download

Dandelion

Read this cultural heritage resource about dandelions written by Birdlife Malta.

Download

Robin

Read this cultural heritage resource about robins written by <u>Birdlife</u> <u>Malta</u>.

Download

Earthworm

Read this cultural heritage resource about earthworms written by Birdlife Malta.

Download

Stinging Nettle

Read this cultural heritage resource about stinging nettles written by <u>Birdlife Malta</u>.

Download

Honey Bee

Read this cultural heritage resource about honey bees written by Birdlife Malta.

Download

Earthworm Information Sheet

Different names

In science, it is known as *Lumbricus terrestris*. The generic Latin name "Lumbricus" means "worm", whilst "terrestris" means "terrestrial", "earthy", which leads to the most common name, "Farthworm"


In Malta it is called *hanex tal-hamrija* (soil worm), whilst in Swedish it is called *daggmask* (dew worm).

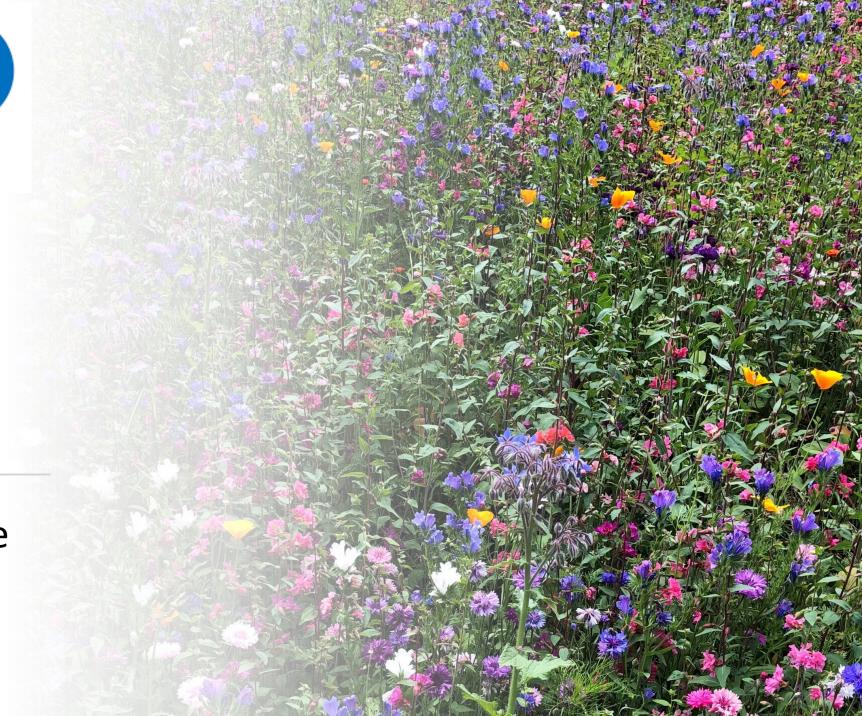
The Spanish and Catalan names are *Lombriz de tierra* and *Cuc de terra* respectively, both meaning "worm of the earth".

All these languages assigned a name that is descriptive of the habitat where the earthworm commonly lives, in moist soil.

Funders and partner organisations

Earthworm Information Sheet

Increasing biodiversity: Planting a meadow


Katedralskolan high school, year 2

- 2 h work
- 8 squere meters
- 8 tablespoons of meadow seeds

Thanks for listening!

naturskolan@lund.se

Questions?